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ABSTRACT 

Theorem. Let G be a finite simple group. Assume (i) 3 l[ G[.  (ii) Each 2rid-maximal 
subgroup of  G has a normal 3-complement. Then G "~ PSL(2,q), for some q. 

Part of the argument is isolated to give a non-existence theorem for simple 
groups with a special 3-Sylow structure. Generalizations are discussed. 

1. The well-known Schmidt-Iwasawa theorem states the following: I f  each 
proper subgroup of the finite group G is nilpotent, then G is solvable. 

Among the generalization of  this beautiful result, let us mention the following 
two: 

If each proper subgroup of the finite group G is p-nilpotent, then G is solvable 
or p-nilpotent i15, Propositions 1, 2]. 

If  each 2nd-maximal subgroup of  the finite group G is nilpotent, and G is not 
solvable, then G _--- A 5 or G "~ SL(2, 5) [19, 16]. 

(p is a fixed prime; a 2nd-maximal subgroup is one which is maximal in a 
maximal subgroup; notice that the hypothesis of the Schmidt-Iwasawa theorem is 
equivalent to "each maximal subgroup is nilpotent"). 

These two results suggest naturally the investigation of  finite groups, whose 
2nd-maximal subgroups are p-nilpotent. The structure of  simple groups of  this 
type, in the case p = 2, was studied in the author's thesis [17]. His results, however, 
are included in a much more general theorem of J. G. Thompson [20]. The structure 
of  the non-simple and non-solvable groups of this type was determined by Ber- 
kovitch [1]. 

In this paper we are interested in the case p = 3, and prove the following: 

Tn'~OREt, i 1. Let G be finite simple non-abelian group. I f  the order of  G is 
divisible by 3, and if  each 2nd-maximal subgroup of G is 3-nilpotent, then 
G -~ PSL(2, q), for some q. 
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This result is proved in Section 4. In Sections 2 and 3 we obtain some results on 
the structure of G without assuming p = 3. Among other results, it is shown that 
a Sylow p-subgroup, P, is either elementary abelian or extra-special, and is usually 
a (TI)-set. When p = 3, results of Feit-Thompson [6] and Herzog [12[ are used 
to dispose of the cases where P is cyclic or abelian non-cyclic, respectively(I). 
When P is extra-special, a character theoretic argument yields a contradiction. 
This argument can be isolated, and is stated in Theorem 2 as a non-existence 
theorem for simple groups with a rather special 3-Sylow structure. This is consi- 
dered in Section 5, where we also consider the possibility of extending our results 
to all p. 

Notation and terminology. G denotes always a finite group. If  X is a subset 
of G, I XI is the number of elements in X. A subgroup H is a p-complement, 
if IHI is prime to p and the index IG:HI is a power of p. G is p-nilpotent, if it 
has a normal p-complement. An S group is a non-nilpotent group, each proper 
subgroup of which is nilpotent. Z(G) and G' denote respectively, the center and 
commutator subgroup of G. An extra-special p-group is a non-abelian p-group, 
in which G/Z(G) is elementary abelian, Z(G) = G' and I Z(G) I = P" A p'-group is a 
group whose order is prime to p. I f  X is a subset, and H a subgroup, of G, then 
C~(X) and Nu(X) are the centralizer and normalizer, respectively, of X in H. 
We shall also write C~(X) = C(X), N6(X) = N(X). X is a (TI) set in G, if, for any 
g ~ N(X), X n X g is empty or contains only the identity. 

We refer the reader to [10, Section 14.4] for the definition and properties of 
p-normality. 

The following (well-known) facts on the structure of S groups will be repeatedly 
used: An S group, G, has order p~qP, where p and q are distinct primes. Denote by 
P a p-Sylow subgroup of G and by Q a q-Sylow subgroup. Then one Sylow sub- 
group, P say, is normal in G, and then Q is cyclic. P/P '  and P '  are both elementary 
abelian, and if  P '  ~ 1, then P '  = Z(P). Q acts irreducibly on PIP'. If  QI is the 
subgroup of index q in Q, then Z(G) = Q1 x P'. If  I P: P 'I  = pro, then m is the 
order of p (mod. q). If  p is odd, then the exponent of P is p. 

All groups in this paper are finite. 

2. We begin with the case of a general p. Throughout the paper, p denotes 
some fixed prime, G is a finite simple group, and we assume 

a Pl IGI, 
b. Each 2nd-maximal subgroup of G is p-nilpotent. 

LE~,tMA 1. Each proper subgroup of G is either p-nilpotent or an S group. 
Any S subgroup of G is a maximal subgroup. 

* The author is indebted to Dr. Marcel Herzog for communication of results prior to 
publication. 
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This follows immediately from our assumptions and [15, Propositions 1, 2]. 

LEMMA 2. G is p-normal. 

Proof. Suppose not. By a result of Burnside [10, 4.2.5-14.4.3], there exists 
a p-subgroup, Q, of G, which is not a Sylow subgroup, and such that N(Q)/C(Q) is 
not a p-group. In particular, N(Q) is not p-nilpotent. By Lemma 1, N(Q) is an 
S group. Moreover, the Sylow p-subgroup, P, of N(Q), is normal in N(Q), other- 
wise N(Q) would be p-nilpotent. Since Q is not a Sylow subgroup of G, it is also 
not a Sylow subgroup of N(Q): Q ~ P. Since Q < N(Q), Q _~ P and Q ~ P, the 
structure of S groups shows that O -~ Z(N(Q)), N(Q) = C(Q), and N(Q)/C(Q) = 1, 
a contradiction. 

Let P be a fixed p-Sylow subgroup of G, Z - -  the center of P, and M = N(Z). 

LEMMA 3. M is an S group and a maximal subgroup of G. Also, M = N(P). 

Proof. The simplicity and p-normality of G imply by the Hall-Griin theorem 
[10, 14.4.6], that M is not p-nilpotent. Hence M is an S group possessing a normal 
p-Sylow subgroup. Therefore M is maximal. Since P _c M, P is a p-Sylow subgroup 
of M, so P <  M. By maximality of M, M = N(P). 

LEMMA 4. Any proper subgroup of G which is not p-nilpotent is conjugate 
to M. 

Proof. Let K be any non-p-nilpotent proper subgroup of G. Then K must be 
a maximal subgroup, and K is an S group with a normal p-Sylow subgroup. 
Let Kp be this Sylow subgroup. Then K = N(Kp) follows from the maximality 
of K and simplicity of G. Hence Kp is a Sylow subgroup of G. Therefore K~ is 
conjugate to P and K is conjugate to M. 

As an S group, M has order pnqm, for some prime q, q ~ p. Also, if Q denotes 
a q-Sylow subgroup of M, Q is cyclic. 

LEMMA 5. m = l .  

Proof. Suppose m > 1. Let T be any non-identity proper subgroup of Q. 
Then T < M ,  by the structure of M, so maximality of M implies M =  N(T). 
T is characteristic in the cyclic group Q, so T<N(Q),  and N(Q) c N(T) = M. 
Therefore Q is a Sylow subgroup of N(Q), hence also of G. Foreach non-identity 
subgroup S of Q, we have shown that N(S) _ M, and therefore N(S) is q-nilpotent. 
Frobenius' theorem [10, 14.4.7] shows that G has a normal q-complement, and is 
not simple, a contradiction. 

If A is a p-subgroup of G, and r is a prime, H(A; r) denotes the set of r-subgroups 
of G that are normalized by A. 

Now we quote the following result. 
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TRANSITIVITY THEOREM. Let H be a simple group such that each proper sub- 
group of G is p-solvable, for some(fixed) prime p. Let P be a p-Sylow subgroup 
of H, A a maximal normal abelian subgroup of P, and q # p a prime. I f  A 
cannot be generated by less than three elements, then any two maximal elements 
of/'/(A; q) are conjugate under an element of Co(A). 

This is proved in [7, Th. 17.1], assuming that each proper subgroup of H is 
solvable. It is known that the theorem holds also under the assumption of p-solva- 
bility of proper subgroups, or even weaker conditions. A discussion of this may be 
found in a forthcoming book of D. Gorenstein [9]. 

By Lemma 1, our group G and the given prime p satisfy the assumptions of the 
transitivity theorem. 

LIZMMA 6. P is the unique Sylow p-subgroup of G containing Z. 

Proof. By definition, M = N(Z). Let PI be any Sylow subgroup containing Z. 
By p-normality, Z = Z(P1). Hence Z < PI, so P~ c_ N(Z)  = M.  As P is the unique 
Sylow p-subgroup of M, P~ = P. 

L~MA 7. Let A be a maximal normal abelian subgroup of P. Then A = C(A). 

Proof. Obviously, A __. Z. Therefore A < P. If P1 is a Sylow p-subgroup of 
N(A), then P1 D_ A ~_ Z and the previous lemma imply P~ = P. Therefore P is 
the unique Sylow p-subgroup of N(A), so P < N ( A )  and N ( A ) ~  N(P)= M. 
Hence C(A) = CM(A) = A. 

LKMMA 8. Let A be a maximal normal abelian subgroup of P. I f  A cannot 
be generated by less than three elements, then I4(A; r) = 1,for any prime r ~ p. 

Proof. Let R and R 1 be two maximal elements of/4(A;r). By the transitivity 
theorem, R 1 = R °, with a ~ C(A). By Lemma 7, a ~ A. Since A c N(R), RI = R, 
and R is the unique maximal element of H(A; r). 

Let g e P. Then A g = A, therefore g transforms I4(A; r) onto itself. In particular, 
we must have Rg= R for R the unique maximal element in /4(A; r). Hence 
p c_ N(R) and REI4(P;r). Let RI e/4(P;r). Then R~ ~14(A;r), therefore R~ is 
contained in the unique maximal element of/4(A;r), R~ c_ R. Therefore R is also 
the unique maximal element of I4(P; r). Now repetition of the argument showing 
P _~ N(R) yields M = N(P) c N(R). Therefore R < MR. As M is maximal, and 
G is simple, it follows that M = MR and R < M. Since M has no normal 

f-subgroup, R = 1. 

LI~ldMA 9. Suppose P is abelian, and I PI ~_ p3. Then, for any 1 ~ a ~ P, 
C(a) = P. 

Proof. Obviously, P c C(a). The structure of M is such, that if P is abelian, 
then it is elementary abelian. Therefore I P J > P~ implies that P cannot have less 
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than three generators. Also, Z(M) = 1. Therefore, C(a) is not conjugate to M, 
as a ~ Z(C(a)). By Lemma 4, C(a) has a normal p-complement, T say. Therefore 
P normalizes T, and (I P [, I T [) = 1. it is well-known that in these circumstances 
P normalizes some r-Sylow subgroup, R, of T, for any prime divisor r of I T [. 
Now Lemma 8 implies R = 1, and therefore also T = 1, so C(a) = P. 

Now consider the case in which P is non-abelian. Denoting again Z = Z(P), 
both Z and P/Z are elementary abeIian. 

LF.MMA 10. I f  P is non-abelian, it is an extra-special group. 

Proof. We have remarked that P/Z and Z are elementary abelian. Hence we 
need prove only that [Z I = p. 

Let Q be a q-Sylow subgroup of M. Then Z = Z(M) implies Z c_ N(Q). Suppose 
N(Q) = QZ. This implies, first, that Q is a Sylow subgroup of G, and, second, that 
Q is in the center of N(Q). Hence G has a normal q-complement [10, 14.3.1], 
and is not simple. Therefore N(Q) ~ QZ. 

Let P~ be a p-Sylow subgroup of N(Q) containing Z. By Lemma 6, P1 _c p. 
Hence P1 = Nv(Q) = Z. Therefore N(Q) cannot be conjugate to M, so, by Lemma 4, 
N(Q) has a normal p-complement, T say. Now N(Q) = TZ ~ QZ, so T ~ Q. 

Z acts on the group T/Q. Let 1 ~ z ~ Z. Then z ~ Z(M), so M = C(z). There- 
fore N(Q) n C(z) = QZ, so C~(z) = Q. As (l T [, p) = 1, this implies CT/Q(z) = 1 
[8, Th. 1]. Hence Z acts as a group of fixed-point-free automorphisms on T/Q. 
According to Burnside [3, p. 335], Z is either cyclic or a generalized quaternion 
group. As Z is elementary abelian, we must have [Z I = P" 

LEMMA 11. Suppose P is extra-special, IPI > p3, and p is odd. Then for any 
a ~ P - Z ,  C ( a )  c_ p .  

Proof. Since P/Z is abelian, we have (a, Z ) <  P. Therefore all the conjugates 
of a in P are contained in (a, Z). P has exponent p, because M is an S group 
and p is odd. Therefore (a,Z)[ = p2, so a has less than p2 conjugates in P. Since 
a~Z,  we must have [P:Ce(a) = p. Since IPI > p3, there exists an element b, 
b E Ce(a)-  (a ,Z) .  The group (a, b,Z) is then elementary abelian of order p3. 
Let A be a maximal normal abelian subgroup of P containing (a,b,Z) .  Then A 
does not have less than three generators. 

Since a ~ Z, C(a)~ M. Suppose C(a) is conjugate to M, and let P1 be the 
(unique) Sylow p-subgroup of C(a). Then e l  ~ P. Since Z(M) = Z, and [ Z I = P, 
we find Z(PI) = Z(C(a)) = (a). Therefore Z(PI) ~ P, which contradicts Lemma 6. 
Therefore C(a) is not conjugate to M. 

Now Lemma 4 implies that C(a) has a normal p-complement, T say. Since 
A c_ C(a), T = 1 follows as in the proof of Lemma 9. Hence C(a) is a p-group. 
However, Z c_ C(a), so, by Lemma 6 again, C(a) c p. 

LEMMA 12. I f  P is as in Lemma 11, P is a (TI) set. 
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Proof. Let P1 be any other Sylow p-subgroup of G, and suppose a e P ~ PI, 
a # 1. By Lemma 6, a ~ Z. Hence Z(PI)~-C(a)~_ P, by the preceding lemma, 
a contradiction. 

3. We are now going to develop the necessary facts on the characters of G. 
We assume, in addition to the assumptions of Section 2, that p is odd, P is an 
extra-special group, and [P[ > pa. 

The above assumptions imply that the order of P is p2,+1 for some natural 
number n, n _>_ 2. Denoting again I M: P I = q, we know that q is prime (Lemma 5), 
and, M being an S group, that 2n is the order of p (rood. q). Therefore q I p2n _ 1, 
but q ,~p" - 1, so q[// '  + 1. Hence q is odd. Since// '  + 1 is even, q < ½(//' + 1). 
Define t by 

p2 ,_  1 
( 1 )  t = 

q 

then t = (p~ - 1) - ~ ,  so t => 2(p ~ - 1). Noting tha t /¢  ___ 9, we obtain 

(2) t > 3q. 

We begin by considering the characters of P. First, P has pZn linear characters, 
which we will denote by (o,(i ,  "-,(p2,-1, with (o = 1. By [11, p. 17], P has also 
p - 1  characters of degree //'. These will be denoted by ~/1, " ", %-1- Since 
p2~ + (p _ 1)(pn)2 = p2~+ 1, we have exhausted the characters of P. 

Let a ~ P -  Z. We have seen in the proof of Lemma 11, that [P: Ce(a)[ = p, 
hence ICe(a) l = p2,. The orthogonality relations of characters imply 

r l~,(a)l 2 + ~ ln , (a )12  = p  2~ 

However, I ¢,(a) l --- 1 for each i, and there are p2n ¢,'s. Therefore ~ [ n,(a)I s = o, 
implying 

(3) ~h(a) = 0, a e e - Z. 

Now consider the characters of M. There are q linear ones, which we denote by 

/z0, . . . , / ~ _ ,  with/to = 1. Note that/lqe = (o. 
If  g is a character of P, we denote by ~ the induced character on M. M/Z is a 

Frobenius group, with kernel P/Z. ~o, "", (p~,-1 may be considered as characters 
of P/Z, so the character theory for Frobenius groups [e.g. 4, pp. 171-172] 
shows that among (1, "", (p~-1 there are exactly t different characters, which we 

may assume to be (1, "", (,, and these are irreducible. 
Now consider fh, for some i, 1 <_- i ~ p - 1. Let m ~ M. Since Z is the center 

of M, and rh vanishes outside Z, we find ff~' = r/i. Therefore, if ml, -", mq are 
representatives of the cosets of P in M, ff~lP = r/~" + ... + ~ff'~ = qr h. 

S nce P<a M, fh vanishes outside P. Therefore 
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(gh' g/")M I M  I IPI(O'J"°'  ")" 

= l ( q r h ,  qrh) e q 

239 

= q  

and so f/i is a sum of at most q irreducible characters of M. 
Since Z is the center of M, the elements of Z constitute p conjugacy classes in M. 

If  a e P - Z, we already know that  t Cu(a) [ = p2,, so a has pq conjugates in M. 
There are p2n+l _ p elements in P - Z, so they constitute I/q(p 2~- 1) = t classes 
in M. Next, if m e M - P, then the order of m is divisible by q, so rn is conjugate 
to an element of ZQ. Therefore [ C u(m)[ =  pq, and m has p2~ conjugates. As 
there are p2~+ lq _ p2~+ 1 such elements, they constitute p q - p  classes, yielding 
a total of pq + t classes of M. This, then, is also the number of characters of M. 
In addition to the pi's and ~t's there must therefore be still (p - 1)q other irreducible 
characters of M. 

Let 2 be any of the missing characters. If  2[ P = ~o, then P < ker 2, so 2 is a 
character of M/P,  so is linear, 2 =/A for some i. Next, if 21 v involves some 
(l (i ~ 0), then ;t is a constituent of ~i- Since (i is irreducible, we get 2 = ~i. Therefore 
21P must involve some r h, so ;t is a constituent of f/i. Since all (p - 1)q missing 
characters are constituents of at least one of the p -  1 characters f/1, "", f/p- 1, and 
each fh is a sum of at most q irreducible characters, we find that, in fact, each fh is 
a sum of exactly q different irreducible characters, yielding altogether all of the 
( p -  1)q missing characters. 

Let 21, "-', 2cp-I)~ be the irreducible characters of M other than the pi's and (i's. 
We have just seen that for each 2i there exists exactly one t/j such that (2qp, t/j) = 1, 
and (,~,ilp, rlk)= 0 for k ~ j .  We have also seen that (,~,ilv,(j) = 0 for j ~ 0, while 
(2ilg,(o) = 0 follows from ~o =/to + / q  + "'" + Pq-1. Therefore 2il e = rlj, so, 
by (3) 

(4) 2 i (a)=0,  a e P - Z  

We now come to the characters of G. By Lemma 12, P is a (71) set. Also 
M = N(P),  and ~1, '",  ~t are characters of M vanishing outside P. The theory of 
exceptional characters [e.g. 5] now implies that there are t irreducible characters 
of G, say )~1, "",)~, and a sign e, such that 

(5) ((i -- (j)* = 8()~i- Z j) i , j ,  = 1 , ' " ,  t 

Here, if  e is a class function of any subgroup of G, e* denotes the induced class 
function of G. 

Let ((~, Xi) = e + a i, for some integer ai. Then (5) shows that, for j ~ i, ((*, X~) = av 
The lemma in [5] implies that ((i*, e(Xi- Xj))~ = ((i*, ( ( i -  (j)*)G = ((i, (, - (j)M = 1, 
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so e(e + ai - a j) = 1, and ai = aj  = a (say). Let 1 be a character of M different 
from all the [~'s. Then (2, It - [1) = 0 implies as above, (2", X~ - X j) = O. From 
the Frobenius reciprocity theorem we get 

t q -  1 (p - 1)q 

1 0 1 

Taking into account (4), and the relations /~jle= ~o, ~ j i  e= ~j,o~j, and 
~ j , o ~ j ( a )  = - 1, for a c P - Z ,  we get 

(6) X~le-z = e~tle-Z + c 

where c is an integer which is independent of i. 
Let 01, ..., 0, be the non-exceptional characters of G (i.e. those different from 

X~,"',Xt). Then (0~,X~- Xj)= 0 and the reciprocity theorem show that all the 
~l's have the same multiplicity in 0klu. It follows, in the same way as for (6), that 
there exists an integer c k so that 

( 7 )  Ok[p- Z -~ C k 

Let a e P -  Z. Then we have seen that [Co(a)] = I Cu(a)[ = p~". The orthogo- 
nality relations in M yield 

t q -  1 ( P -  l)q 

f ' - -  ]~lC,(a)l:+ 2~ I,,(a)l + I ,(a)l 
1 0 1 

in view of  (4) and/Z~l e = ~o, this means 

t 

(s) ~ I ¢~a) l 2 : f "  - q, a e P -  Z 
1 

The orthogonality relations in G yield 

t 8 

p::=  ~:lxga)i: ÷ ~ lo~a) l :  
1 

t 

~[~¢~a) + cl ~ + Y~c: 
l 

t t 

~]~ga)[ ~ + 2ec Y~P.e~a)+ t :  + Y c~ 
1 1 

using (8) and ~ ~ a )  -- - 1, we obtain 

p2, _ p2, _ q _ 2ec + tc 2 + ~ c~ 

(9) tc 2 ~_ q -!" 2ec 
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Suppose c # 0. Then (9) yields t < q + 2, which contradicts (2). Therefore 

( lO)  c = o 

It is also possible to show the existence of  characters of G which play the role 
of exceptional characters with respect to the characters r/i of P. These characters 
can be constructed as a special case of the construction in Section 13 of [7]. 
However, these results are not needed for the proof of  our theorem. 

4. P r o o f  o f  the main theorem. Let G be a simple group of order divisible by 3, 
such that each 2nd-maximal subgroup of G is 3-nilpotent. Let P, M, etc. have the 
same meaning as in Sections 2 and 3, with p = 3. 

If  I PI = 3, then, by a result of Feit-Thompson [6, Cor], G is isomorphic to 
either PSL(2, 5) ~ A 5 or to PSL(2, 7). 

If  [P[ = 9, then, since q is a prime dividing [PI - t, q = 2. This is a contra- 
diction, since the order of  3 (mod. 2) is 1 and not 2. 

Hence, if P is abelian, we may assume [ P 1= > 27. This implies, as for P I = 9, 
that q # 2. Therefore q is odd and q # I P I - 1. Now G ~ PSL(2, P ) follows 
from Lemma 9 and [12, Th. 5.1]. 

From now on we shall assume that P is not abelian. Eventually, this assumption 
will lead to a contradiction. 

By Lemma 10, P is an extra-special group. If  [P I=  27, then, since now 

ql- lPI- 1, we get the same contradiction as for [PI = 9. Hence I P I >  27 and 

q is odd, so Lemmas 11, 12 and all the results of section 3 apply. 
The key result here is the following. 

LEMMA 13. Let a, b e G ,  c e P - Z ,  a b = c  and a a = b  a = c  a = l .  Then, 
unless perhaps a and b are conjugate to each other and to c-  1, a ~ P and b e P. 

Proof .  Let H = (a,  b, c). By [6, Th. 1] H contains a normal abelian subgroup, 
K say, such that In:gl = 3. Suppose 3 I l K  l, and let L be the Sylow 3-subgroup 
of  K. Then L.,~H, so L is contained in all Sylow 3-subgroups of  H. Letting P1 
be any Sylow 3-subgroup of G containing L, Lemma 12 implies that all Sylow 
3-subgroups of H are contained in P1, therefore Pl = P and H ~ P. 

Suppose, then, that (]K 1,3)= 1. Then (a ) ,  ( b )  and (c)  are all Sylow 3- 
subgroups of H. If  a is conj ugate in H to b - 1, we find a ---- b-  1 (rood. K), c = a b e K. 
Therefore, as ( a )  and (b )  are conjugate in H, a and b are conjugate. Again, if 
a is conjugate to c, we find c 2 = abc -- a a = 1 (rood. K), another contradiction. 
Therefore a is conjugate to c-1. 

Let C1,..., Cr be the conjugate classes of G containing elements from P - Z, 
and let (7t = C~ n M. Then Lemma 12 shows that Ci is a class of M. We have seen 
in Section 3 that M contains t classes consisting of elements of  P - Z, so r = t. 

Denote by Ci also the sum of the elements of Ci, regarded as an element of the 
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group ring of  G (over the complex numbers). Let cuk be the coefficient of  Ck in the 
product C~C2, and let S~jk have the same significance for M and the ~ ' s .  If  c e Ck, 
then C~jk is the number of  solutions of  ab = c, with a e C~, b ~ Cj. Therefore 
Lemma 13 implies 

(11) cijk = Sijk, unless perhaps Cz = Cj = C~ "1 

(compare with Theorem 4.1 of [12]). 
Recall that X~, "",)Ct, 0a, ...,0~ are all the irreducible characters of  G, and that 

if a ~ P - Z, [ C(a) l = p~". Using (7), [2, formula (21)] yields 

( ~  zt(a)zt(b)zz(c-X) ~ cam ] 
(12) czjk = P \ t )riO) + 1 0----~] 

where a ~ Ci, b e ~j, c e Ck. The same formula for M yields, using (4) 

p2.+ lq / ,  (t(a)(,(b)(,(c-a) 

q - I  
+ N lh(a)#~(b)lh(c-1) 

o gt(1) 
+ 0,-~1)~ 2,(a)21(b)2t(c- 1) 

1 ,V1) ] 

From (6), (10) and the last equality we obtain 

t t 
~,zt(a))fi(b)z,(c- x) = e ~, (t(a)(t(b)(,(c- 1) 
1 1 

/p2.-1 
= e q t - - - ~ s i j  k -- q) 

Substituting in (12) and using(ll) yields 

I GII 1 .~ 2 . - % _  ~ e ) + / :  C3m 
(13) s,~ = --~-~x-iByt  p 1 o--2~! 

8[G[ ! GI = 1. Then Xt(1) = vz .+ l ,  Suppose p2,+ lXl(1) 

which yields [ I~1 ~2 < I G I' I GI < P"÷~ The impossibility of this last inequality \p~.+l! 
may be shown as follows: since P is a (TI) set, no non-identity element of  P 
normalizes any Sylow p-subgroup of  G, other than P. Therefore each Sylow 
p-subgroup different from P of  G has exactly pZ.+ z conjugates under P, and the 
total number of  Sylow p-subgroups is mp2"+1+1,  for some m, m ~ 0 .  As 
M = N(P), this gives for the order of  G: [G[ = pZ"+lq(mp2"+l + 1) > p4.+2. 
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Therefore I G I p2,÷lx~(1) ~ 1. This means that the Equation (13) determines S~jk 

uniquely, that is: for all triples of indices (i , j ,k),  for which C~ = Cj = Ck 2 is 

false, S~jk is the same. This is an assertion involving only the group M (not G), 
and it will be shown to be false, thus completing our proof. 

Let a ~ P - Z. Since P/Z is abelian, any conjugate of  a in P belongs to aZ. 

As a ~ Z, there exist such conjugates different from a. Their number is a power 
of  P. As I aZ I = P, this means that aZ consists of all the conjugates of a in P. 

By (2), t > 3. Therefore, we can find an element b e P - Z, which is conjugate 
neither to a nor to a -  2. Write a = bc. If  c e Z, then a ~ bZ, so a is conjugate to b. 
Therefore c e P - Z. Let il, Jl ,  kl be the indices for which b ~ C~,, c ~ Cjl, a ~ Ckl, 
then S~j,k~ ~ O. Moreover, for any z e Z, we have a = bz • cz-  2, and bz e C~, 

c z - l  e Cj,. Therefore Si,jlkl > P. By the assertion made above, Siik~ > P for all 
pairs (i,j) excepting one pair at most. Hence, using (1) and (2), 

~, Sijkj ~ ( t  2 - -  1)p > tqp = (p2, _ 1)p. 
i , j  

However, ~,i.jS~jk, is the total number of solutions of xy = a, with x, y ~ P - Z. 
Each such pair (x, y) is determined by x alone, so the number of pairs is at most 
[ p _  ZI = ( p 2 , _  1)p. This is the desired contradiction. 

5. Extensions. In Section 3, and the relevant parts of  Section 4, we have not 
made use of  the full assumption on G. Rather, the crucial point is the special 
structure of  the group M, and even here we need slightly less than the fact that M 
is an S group. Also, the fact that q is prime is needed only to prove the inequalities 

t > 3, (t 2 - 1) > tq and t > q + 2, all of  which follow from (in fact, are equivalent 
to) the inequality q < p" - 1. Thus we have proved 

THEOREM 2. There exists no simple group G, whose order is divisible by 3, 
and which satisfies the following conditions (where P denotes a Sylow 3-subgroup 
of G, M = N(P) and Z = Z(P)). 

a. P is an extra-special group, of order 32n+x, say, and of exponent 3. 
b. P is a (TI )  set. 

c. Z = Z(M), M = N(Z), and M / Z  is a Frobenius group with kernel P/Z. 
d. I f q  = IM:P[ ,  then q < a n -  1. 

Next, note that in the proof  of  Theorem 2 the fact that we are dealing with the 

prime 3 is needed in only one point, the proof of  Lemma 13. Accordingly, let us 
introduce the following condition, where p is some given prime and G -  a finite 
group. 

(H) I f  a, b, c ~ G, ab = c, a, b, c have order p, and c a'P, where P is a Sylow 
p-subgroup of G, then, unless perhaps a, b, and c -1 are all conjugate, a ~ P and 
b e P. (This condition was introduced in [14]). 

Then we have 
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THEOREM 3. Theorem 2 still holds, if  we change everywhere the prime 3 
to the prime p and, in addition, assume that G satisfies (H). 

Now, consider what happens to Theorem 1 if we change 3 to p and add the 
condition (H). Most of the proof still holds, with the results of [13] and 114, Theo- 
rem 4] replacing those of  [6] and [12]. The only difference is that we cannot 
rule out the possibilities that P is elementary abelian of order p2 or extra-special 
of  order pa. However, this should not disturb us if we can show that P is, anyway, 

a (TI) set. For odd p this follows from 

LEMMA 14. Let p be an odd prime, and G a simple group whose order is 
divisible by p. Assume that each 2-maximal subgroup of G is p-nilpotent and 
that G satisfies (H). Then P, a Sylow p-subgroup of G, is a (TI) set. 

Proof. We know already that P is either elementary abelian or extra-special. 

Assume first that P is abelian. Then we can certainly assume I P[ > p. 
Let Q be another Sylow p-subgroup, and let 1 ~ a ~ P r~ Q. Let b e Q - P. 

Then, a, b and ab all have order p. Thus (H) implies, since b ~ P, that b is con- 
jugate to a. Changing a to a -1, we find that b is also conjugate to a -1, hence a 
and a -~ are conjugate, a = g - l a - l g ,  say. Then g e N ( ( a ) )  but, as p is odd, 
g q~ C((a)).  Therefore, N((a ) )  is not p-nilpotent, so, by Lemma 4, N((a ) )  is con- 
jugate to M. This, however, is impossible, M having no normal subgroups of  

order p. 
Next, let P be extra-special, and Q and a as above. By Lemma 6, a ~ Z and 

Q N z = 1. Thus, if  1 ~ z ~ Z, it follows as for b above that z is conjugate to a. 
But then z is contained in a Sylow-intersection, again a contradiction. 

Lemma 14 and our previous remarks yield 

THEOREM 4. Let p and G satisfy the same assumptions as in Lemma 14. 

Then G ~- PSL(2, q) for some q. 
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